89 research outputs found

    Numerical simulation of Faraday waves

    Full text link
    We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier-Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The domain of calculation is periodic in the horizontal directions and bounded in the vertical direction by two rigid horizontal plates. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar and Tuckerman [J. Fluid Mech. 279, 49-68 (1994)]. The finite amplitude results are compared with the experiments of Kityk et al. [Phys. Rev. E 72, 036209 (2005)]. In particular we reproduce the detailed spatiotemporal spectrum of both square and hexagonal patterns within experimental uncertainty

    Can Embeddings Adequately Represent Medical Terminology? New Large-Scale Medical Term Similarity Datasets Have the Answer!

    Full text link
    A large number of embeddings trained on medical data have emerged, but it remains unclear how well they represent medical terminology, in particular whether the close relationship of semantically similar medical terms is encoded in these embeddings. To date, only small datasets for testing medical term similarity are available, not allowing to draw conclusions about the generalisability of embeddings to the enormous amount of medical terms used by doctors. We present multiple automatically created large-scale medical term similarity datasets and confirm their high quality in an annotation study with doctors. We evaluate state-of-the-art word and contextual embeddings on our new datasets, comparing multiple vector similarity metrics and word vector aggregation techniques. Our results show that current embeddings are limited in their ability to adequately encode medical terms. The novel datasets thus form a challenging new benchmark for the development of medical embeddings able to accurately represent the whole medical terminology.Comment: Accepted at AAAI 202

    Alternating hexagonal and striped patterns in Faraday surface waves

    Full text link
    A direct numerical simulation of Faraday waves is carried out in a minimal hexagonal domain. Over long times, we observe the alternation of patterns we call quasi-hexagons and beaded stripes. The symmetries and spatial Fourier spectra of these patterns are analyzed

    Faraday instability on a sphere: numerical simulation

    Full text link
    We consider a spherical variant of the Faraday problem, in which a spherical drop is subjected to a time-periodic body force, as well as surface tension. We use a full three-dimensional parallel front-tracking code to calculate the interface motion of the parametrically forced oscillating viscous drop, as well as the velocity field inside and outside the drop. Forcing frequencies are chosen so as to excite spherical harmonic wavenumbers ranging from 1 to 6. We excite gravity waves for wavenumbers 1 and 2 and observe translational and oblate-prolate oscillation, respectively. For wavenumbers 3 to 6, we excite capillary waves and observe patterns analogous to the Platonic solids. For low viscosity, both subharmonic and harmonic responses are accessible. The patterns arising in each case are interpreted in the context of the theory of pattern formation with spherical symmetry

    Computations of Drop Collision and Coalescence

    Get PDF
    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown

    Computations of drop collision and coalescence

    Get PDF
    Computations of drops collision and coalescence are presented. The computations are made possible by a recently developed finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the boundaries between the various collision modes for drops of equal size and two examples, one of a 'reflective' collision and another of a 'grazing' collision is shown. From drops of unequal size, coalescence can result in considerable mixing between the fluid from the small and the large drop. This problem is discussed and one example showed. In many cases it is necessary to account also for heat transfer along with the fluid mechanics. We show two preliminary results where we are using extensions of the method to simulate such a problem. One example shows pattern formation among many drops moving due to thermal migration, the other shows unstable evolution of a solidification front

    Human Evaluation and Correlation with Automatic Metrics in Consultation Note Generation

    Get PDF
    In recent years, machine learning models have rapidly become better at generating clinical consultation notes; yet, there is little work on how to properly evaluate the generated consultation notes to understand the impact they may have on both the clinician using them and the patient's clinical safety. To address this we present an extensive human evaluation study of consultation notes where 5 clinicians (i) listen to 57 mock consultations, (ii) write their own notes, (iii) post-edit a number of automatically generated notes, and (iv) extract all the errors, both quantitative and qualitative. We then carry out a correlation study with 18 automatic quality metrics and the human judgements. We find that a simple, character-based Levenshtein distance metric performs on par if not better than common model-based metrics like BertScore. All our findings and annotations are open-sourced.Comment: To be published in proceedings of ACL 202

    Human Evaluation and Correlation with Automatic Metrics in Consultation Note Generation

    Get PDF
    The authors would like to thank Rachel Young and Tom Knoll for supporting the team and hiring the evaluators, Vitalii Zhelezniak for his advice on revising the paper, and Kristian Boda for helping to set up the Stanza+Snomed fact-extraction system.Publisher PD
    corecore